Применение теории графов в биологии и медицине

Картинка

Применение теории графов в химии

Применение теории графов на построении и анализе различных классов химических и химико-технологических графов, которые называются также топология, моделями, т.е. моделями, учитывающими только характер связи вершин. Дуги (ребра) и вершины этих графов отображают химический и химическо-технологический понятия, явления, процессы или объекты и соответственно качественной и количественной взаимосвязи либо определенные отношения между ними.

Теоретические задачи. Химические графы дают возможность прогнозировать химические превращения, пояснять сущность и систематизировать некоторые основные понятия химии: структуру, конфигурацию, конфирмации, квантовомеханическую и статистико-механическую взаимодействия молекул, изомерию и др. К химическим графам относятся молекулярные, двудольные и сигнальные графы кинетических уравнений реакций. Молекулярные графы, применяемые в стереохимии и структурной топологии, химии кластеров, полимеров и др., представляют собой неориентированные графы, отображающие строение молекул. Вершины и ребра этих графов отвечают соответствующим атомам и химическим связям между ними.

В стереохимии орг. в-в наиболее часто используют молекулярные деревья - остовные деревья молекулярных графов, которые содержат только все вершины, соответствующие атомам Составление наборов молекулярных деревьев и установление их изоморфизма, позволяют определять молекулярные структуры и находить полное число изомеров алканов, алкенов и алкинов. Молекулярные графы дают возможность сводить задачи, связанные с кодированием, номенклатурой и структурными особенностями (разветвленность, цикличность и т.п.) молекул различных соединений, к анализу и сопоставлению чисто математических признаков и свойств молекулярных графов и их деревьев, а также соответствующих им матриц. Для выявления количества корреляций между строением молекул и физико-химическими (в т.ч. фармакологическими) свойствами соединений разработано более 20 т. наз. Топологических индексов молекул (Винера, Балабана, Хосойи, Плата, Рандича и др.), которые определяют с помощью матриц и числовых характеристик молекулярных деревьев. Напр., индекс Винера W = (m3 + m)/6, где т-число вершин, отвечающих атомам С, коррелирует с молекулярными объемами и рефракциями, энтальпиями образования, вязкостью, поверхностным натяжением, хроматографическими константами соединений , октановыми числами углеводородов и даже физиол. активностью лекарственных препаратов. Важными параметрами молекулярных графов, используемыми для определения таутомерных форм данного вещества и их реакционной способности, а также при классификации аминокислот, нуклеиновых кислот, углеводов и др. сложных природных соединений, являются средняя и полная (Н)информационная емкости. Анализ молекулярных графов полимеров, вершины которых отвечают мономерным звеньям, а ребра-химическими связям между ними, позволяет объяснить, например: эффекты исключенного объема, приводящие к качеств. изменениям прогнозируемых свойств полимеров. С применением Теории графов и принципов искусственного интеллекта разработано программное обеспечение информационно-поисковых систем в химии, а также автоматизированных систем идентификации молекулярных структур и рационального планирования органического синтеза. Для практической реализации на ЭВМ операций выбора рациональных путей хим. превращений на основе ретросинтетического и синтонного принципов используют многоуровневые разветвленные графы поиска вариантов решений, вершины которых соответствуют молекулярным графам реагентов и продуктов, а дуги изображают превращения.

Для решения многомерных задач анализа и оптимизации химико-технологических систем (ХТС) используют следующие химико-технологические графы: потоковые, информационно-потоковые, сигнальные и графы надежности. Для изучения в хим. физике возмущений в системах, состоящих из большого числа частиц, используют т. наз. диаграммы Фейнмана-графы, вершины которых отвечают элементарным взаимодействиям физических частиц, ребра их путям после столкновений. В частности, эти графы позволяют исследовать механизмы колебательных реакций и определять устойчивость реакционных систем.Материальные потоковые графы отображают изменения расходов в-в в ХТС.Тепловые потоковые графы отображают балансы теплоты в ХТС; вершины графов соответствуют аппаратам, в которых изменяются расходы теплоты физических потоков, и, кроме того, источникам и стокам тепловой энергии системы; дуги отвечают физическим и фиктивным (физ.-хим. превращения энергии в аппаратах) тепловым потокам, а веса дуг равны энтальпиям потоков. Материальные и тепловые графы используют для составления программ автоматизированной разработки алгоритмов решения систем уравнений материальных и тепловых балансов сложных ХТС. Информационно-потоковые графы отображают логико-информационную структуру систем уравнений мат. моделей ХТС; применяются для составления оптимальных алгоритмов расчета этих систем. Двудольный информационный граф неориентированный или ориентированный граф, вершины которого отвечают соотв. уравнениям fl -f6 и переменным q1 – V, а ветви отображают их взаимосвязь. Информационный граф – орграф, изображающий порядок решения уравнений; вершины графа отвечают этим уравнениям, источникам и приемникам информации ХТС, а ветви-информац. переменным. Сигнальные графы соответствуют линейным системам уравнений математических моделей химико-технологических процессов и систем. Графы надежности применяют для расчета различных показателей надежности Х.

Применение теории графов в биологии и медицине

В конце двадцатого века на основе теории графов сформировалась новая область статистической физики – теория сложных сетей, ставшая эффективным инструментом исследования сложных систем различной природы, в том числе биологии и медицины . В последние годы приложения теории сложных сетей к проблемам возникновения болезней человека привело к возникновению нового направления в медицине – сетевой медицины (Network Medicine). Цель данной статьи – представить краткий обзор наиболее важных публикаций этого научного направления, прежде всего связанных с пониманием проблемы взаимосвязи различных заболеваний.

В современной биологии и медицине значительные усилия направлены на нахождение связей между молекулярно-генетическим происхождением заболевания и его фенотипическим проявлением в виде симптомов. Хотя часто заболевания лечатся независимо от других, мало кто сомневается, что болезни связаны между собой. В 2007 году была построена первая сетевая структура заболеваний человека, в которой каждому узлу соответствует определенное заболевание и между узлами существует связь, если соответствующие им заболевания вызваны каким-то одним генетическим изменением . Позднее аналогичные сетевые структуры стали создавать на основе патологий в метаболических реакциях, в белковых взаимодействиях, регуляторных и сигнальных сетях и т.д., а также учитывались взаимодействия людей в социальных сетях, что позволило начать изучение проблем медицины методами теории многослойных сетей .

Чаще всего болезнь вызвана взаимодействием процессов на молекулярном уровне. Взаимосвязи между этими процессами отображаются в интерактоме – многослойной сетевой структуре, включающей в себя все взаимодействия в живой клетке: от сети взаимодействий белок-белок до регуляторных сетей и сетей метаболических реакций. Несколько лет назад стало известно свойство связанных с болезнями белков взаимодействовать между собой. Это дало основание предположить, что такие белки образуют в интерактоме кластер, содержащий все связанные между собой молекулярные субстраты болезни. Этот кластер получил название модуль заболевания.