Теория графов и ее применение в науке

Картинка

Применение графов

Графы в теории массового обслуживания

Понятие центральной вершины и центра графа появились в связи с задачами оптимального размещения пунктов массового обслуживания, таких как больницы, сберегательные банки, пожарные части, почтамты и т.п., когда важно минимизировать наибольшее расстояние от любой точки населенного пункта до ближайшего пункта обслуживания.

Графы в математике.

В математике графы применяются для решения логических задач и головоломок. Основной применения графов для решения логических задач служит выявление и последовательное исключение возможностей, заданных в условии. Это выявление логических возможностей часто может быть истолковано с помощью построения и рассмотрения соответствующих графов.

Графы в физике.

Недавно в одной из наиболее сложных и утомительных задач для радиолюбителей было конструирование печатных схем. Печатной схемой называют пластинку из какого - либо диэлектрики (изолирующего материала), на которой в виде металлических полосок вытравлены дорожки. Пересекаться дорожки могут только в определенных точках, куда устанавливаются необходимые элементы (диоды, триоды, резисторы и другие), их пересечение в других местах вызовет замыкание электрической цепи. В ходе решения этой задачи необходимо вычертить плоский граф, с вершинами в указанных точках. Итак из всего вышеперечисленного неопровержимо следует практическая ценность теории графов

Теория графов в психологии.

В психологии графы используются для представления промежуточных и окончательных результатов теоретических и экспериментальных исследований. При этом часто графы приобретают формы блок - схем.

Теория графов в логистике.

В анализе логических систем основной формы модели, подлежащий совершенствованию и насыщению данными с помощью экспертных оценок, является дерево целей. Экспертам по логистике предлагается оценить структуру логистической модели в целом и дать предложения о включении в нее не учетных связей. При этом используется анкетный метод. Результаты каждого опроса доводятся до сведения всех экспертов по логистике, что позволяет им далее корректировать свои суждения на основе вновь полученной информации. Дерево целей представляет собой связной граф, вершина которого интерпретируется как цели логистической системы, а ребра или дуги - как связи между ними. Это основной инструмент увязки целей верхнего уровня логистической организации с конкретными средствами их достижения на нижнем операционном уровне.

Теория графов в химии.

Теория графов позволяет точно определить и пояснить некоторые основные понятия химии: структуру, конфигурацию, конформацию, квантовомеханическое и статистико-механическое взаимодействия молекул, определять число теоретически возможных изомеров органических соединений, позволяет анализировать некоторые химические превращения, описывать химические реакции, определять некоторые свойства молекул.

Типы социологических и социально-психологических задач, решаемых с помощью Теории графов

Язык Теории графов хорошо приспособлен для анализа разного рода структур и передачи состояний. В соответствии с этим можно выделить следующие типы социологических и социально-психологических задач, решаемых с помощью Теории графов.
1) Формализация и построение общей структурной модели социального объекта на разных уровнях его сложности. Например, структурная схема организации, социограммы, сравнение систем родства в разных обществах, анализ ролевой структуры групп и т.д. Можно считать, что ролевая структура включает три компонента: лица, позиции (в упрощенном варианте - должности) и задачи, выполняемые в данной позиции. Каждая компонента может быть представлена в виде графа:
Картинка
Можно совместить все три графа для всех позиций либо только для одной, и в результате мы получаем ясное представление о конкретной структуре к.-л. данной роли. Так, для роли позиции P5 имеем граф (рис.). Вплетение неформальных отношений в указанную формальную структуру значительно усложнит граф, но зато он будет более точной копией действительности.
Картинка

2) Анализ полученной модели, выделение в ней структурных единиц (подсистем) и изучение их связей. Таким способом могут быть выделены, напр., подсистемы в крупных организациях.

3) Изучение уровней структуры иерархических организаций: количество уровней, количество связей, идущих из одного уровня в другой и от одного лица к другому. На основании этого решаются задачи:

а) количественной оценки веса (статуса) индивида в иерархической организации. Одним из возможных вариантов определения статуса является формула:

где r (р) - статус некоторого лица р, k - величина уровня субординации, определяемая как наименьшее количество шагов от данного лица к своему подчиненному, nk - количество лиц на данном уровне k. Например, в организации, представленной след. графом:
Картинка Картинка
б) определение лидера группы. Лидер характеризуется обычно большей по сравнению с другими связанностью с остальными членами группы. Как и в предыдущей задаче, здесь также могут быть использованы различные способы для выделения лидера.

Наиболее простой способ дается формулой: r=Σdxy/Σdqx, т.е. частное от деления суммы всех дистанций каждого до всех других на сумму дистанций данного индивида до всех других.

4) Анализ эффективности деятельности данной системы, куда входят также такие задачи, как поиски оптимальной структуры организации, повышение сплоченности группы, анализ социальной системы с точки зрения ее устойчивости; исследование потоков информации (передачи сообщений при решении задач, влияние членов группы друг на друга в процессе сплачивания группы); при помощи Т. г. решают проблему нахождения оптимальной коммуникационной сети.

В применении к Теории графов , так же как к любому математическому аппарату, верно утверждение, что основные принципы решения задачи задаются, содержательной теорией (в данном случае социологией).